Es soll eine Matrix angelegt werden, deren Elemente alle die gleiche Nummer haben. Eine Matrix mit Nullen erstellen, dann eine Zahl hinzufügen. Wenn noch keine Matrix angelegt wurde, enthält das Bild nur die bisher eingegebenen Klassen. Es kann eine Matrix aus einem bestehenden Stundenplan erstellt werden. Eine Matrix zum Bericht; Hinzufügen einer übergeordneten Gruppe oder Untergruppe zu einer Matrix; Hinzufügen einer benachbarten Gruppe zu einer Matrix; siehe für weitere Informationen.
LaborVIEW 2017-Hilfe
Führt eine Mathe 6 keine Matrizenoperationen durch, sondern verwendet einen Matrizendatentyp, wird die Matrix automatisiert in ein 2D-Array umgerechnet. Bei der Verbindung eines 2D-Arrays mit einem MI, das standardmäßig Matrizenoperationen ausführt, konvertiert das MI in Abhängigkeit vom Typ des 2D-Arrays dieses in eine reale oder komplizierte Matrix.
Viele numerische Anwendungen sind sowohl für Matrixdatentypen als auch für Matrixoperationen zu haben. Beispielsweise kann eine Matrix über die Multiplikationsfunktion mit einer anderen Matrix oder Nummer vervielfacht werden. Dieser Konvertierungstyp hat keinen Einfluß auf die Geschwindigkeit der Ausführung, da die Matrix wie ein 2D-Array abspeichert wird.
In einer realen Matrix befinden sich doppelt genaue und in einer komplexen Matrix doppelt genaue Bestandteile. Die Matrix kann nur zweidimensional sein. Die gleichen Restriktionen wie für ein Array bestehen für Matrix. Verwenden Sie die Matrizenfunktionen, um einzelne Bestandteile, Reihen und Säulen einer Matrix zu editieren. Mit den Matrizenfunktionen werden die Matrixdatentypen ausgegeben. Zum Beispiel, wenn Sie eine Reihe oder Reihe mit der Read matrix elements function entpacken, wird eine Matrix mit einer Reihe oder Reihe von Einzelwerten anstelle eines 1D-Arrays erstellt.
Diese Matrix und andere Felder mit der Matrix erstellen-Funktion verknüpfen, um eine Matrix anstelle eines 2D-Arrays von Einzelwerten zu erstellen. Falls Sie ein 1D-Array oder eine Nummer für die Wiederherstellung einer 2D-Struktur benutzen, ist es mehr wie das Erstellen eines 2D-Arrays als die ursprüngliche Matrix. Das folgende Blockschaltbild nutzt die automatische Indexierung in einer For-Schleife, um aus einer Matrix Informationen zu gewinnen und die Matrix in einem 2D-Array wiederherzustellen.
Wenn die automatische Indexierung aktiviert ist, wird eine Matrix in der For-Schleife als 2D-Array betrachtet. Falls Sie den Matrix-Datentyp als Eingabe an einer bestimmten Position in einem MI brauchen, wandeln Sie das 2D-Array mit der Zusatzfunktion „Array in Matrix“ in eine Matrix um, s. folgendes Blockschaltbild. Deaktiviert die automatische Indexierung und verwendet Shift-Register, um die eingegebenen Werte als Matrix-Datentyp zu erhalten.
Im folgenden Blockschaltbild werden z. B. mit Schieberegistern sowohl die Abmessungen als auch der Datentyp der Matrix beibehalten. Zahlreiche vielgestaltige Funktionalitäten, die den Matrix-Datentyp annehmen, liefern den Matrix-Datentyp, auch wenn es sich um eine Array-basierte Aktion handeln sollte. Anschließend können Sie mit der Zusatzfunktion „Array in Matrix“ das Feld bei Bedarf wieder in eine Matrix konvertieren, z.B. bei Einsatz der linearen Vias.
Zum Abspeichern der Messdaten als Matrix können Sie mit der Zusatzfunktion „Array in Matrix“ die Messdaten wieder in eine Matrix umwandeln. Standardmäßig werden bei Matrixelementen mehrere Objekte angezeigt und es gibt Scrollbalken für beide Größen. Um eine Matrix-Konstante im Blockschaltbild zu erzeugen, markieren Sie ein Matrix-Element aus der Elemente-Palette und kopieren es in das Blockschaltbild.
Wahlweise kann über eine beliebige Matrixverbindung eine feste Größe erzeugt werden. Man kann eine Matrizenkonstante als Grundlage für den Abgleich mit einem anderen Feld oder für die Speicherung von Konstantenwerten haben. Im Blockschaltbild ähnelt der Matrix-Datentyp einem echten 2D-Array oder einem komplexen 2D-Array mit einem anderen Anschlussmuster.
Bei der Erstellung eines Matrixdatentyps am Input werden von den mit dem Matrixdatentyp arbeitenden Views und Funktionalitäten auch matrixspezifische Aktionen durchgeführt. Wird ein Matrixdatentyp an eine der nachfolgenden Funktion angeschlossen, wird er durch ein MI abgelöst, dessen SubVI mit dem Matrixdatentyp arbeiten: Die sich ergebende Variable hat dasselbe Zeichen, aber einen matrixspezifischen Berechnungsalgorithmus.
Wird die Matrize von den Eingaben getrennt, verbleibt der Node als VI. Wenn Sie z.B. eine (2, 3) Matrix mit einem der Eingänge der Additionsfunktionen und eine (3, 2) Matrix mit dem anderen Ausgang verknüpfen, gibt die Matrix eine Leermatrix aus.
Vergleich von Matrixen mit den Funktionalitäten Equal? und Unequal? Dieser Befehl bewirkt die Array-Operation, wenn der an das Anschlußfeld angeschlossene Output kein 2D-Array ist. Bei der Kombination einer realen Matrix und eines komplexen 2D-Arrays gibt die Prüffunktion ein kompliziertes 2D-Array aus, da die Ausgabe komplizierte Bauteile benötigt.
In einem zweiten Falle wird ein Typkonvertierungspunkt am realen Matrixeingang eingeblendet, um anzuzeigen, dass die eigentliche Matrix durch die entsprechende Prozedur in ein kompliziertes 2D-Array umgewandelt wird. Sie können aber auch eine Defaultgröße angeben, wenn Sie einer Matrix Vorschlagswerte zuordnen. Wird ein Matrix-Element auf der Frontplatte platziert, handelt es sich um eine freie Matrix.
Auf der Frontplatte hat ein Matrix-Element zwei Vorgabewerte: einen Matrix-Vorgabewert (Fließkomma oder komplex) und einen Vorgabewert in jeder einzelnen Zeile. Die Voreinstellung der Matrix ist die selbe wie bei allen anderen Frontplattenelementen. Die Matrix wird beim Vergrößern mit dem voreingestellten Einzelwert gefüllt. Bei Matrizenfunktionen werden bei ungültigen Aktionen außerhalb der Originalmatrix oder des 2D-Arrays dargestellt.
Bei unzulässigen Eingaben ist die Art dieser Angaben von den Angaben und der Elementart der Eingabe abhängig. Bei unzulässigen Eingriffen weicht die Ausgabe von dem Vorschlagswert 0 ab, der beim Erweitern einer Matrix ausgegeben wird.
Leave a Reply